Pediatric and adult glioblastoma radiosensitization induced by PI3K/mTOR inhibition causes early metabolic alterations detected by nuclear magnetic resonance spectroscopy

نویسندگان

  • Alice Agliano
  • Geetha Balarajah
  • Daniela M. Ciobota
  • Jasmin Sidhu
  • Paul A. Clarke
  • Chris Jones
  • Paul Workman
  • Martin O. Leach
  • Nada M.S. Al-Saffar
چکیده

Poor outcome for patients with glioblastomas is often associated with radioresistance. PI3K/mTOR pathway deregulation has been correlated with radioresistance; therefore, PI3K/mTOR inhibition could render tumors radiosensitive. In this study, we show that NVP-BEZ235, a dual PI3K/mTOR inhibitor, potentiates the effects of irradiation in both adult and pediatric glioblastoma cell lines, resulting in early metabolic changes detected by nuclear magnetic resonance (NMR) spectroscopy. NVP-BEZ235 radiosensitises cells to X ray exposure, inducing cell death through the inhibition of CDC25A and the activation of p21cip1(CDKN1A). Lactate and phosphocholine levels, increased with radiation, are decreased after NVP-BEZ235 and combination treatment, suggesting that inhibiting the PI3K/mTOR pathway reverses radiation induced metabolic changes. Importantly, NVP-BEZ235 potentiates the effects of irradiation in a xenograft model of adult glioblastoma, where we observed a decrease in lactate and phosphocholine levels after seven days of combination treatment. Although tumor size was not affected due to the short length of the treatment, a significant increase in CASP3 mRNA was observed in the combination group. Taken together, our data suggest that NMR metabolites could be used as biomarkers to detect an early response to combination therapy with PI3K/mTOR inhibitors and radiotherapy in adult and pediatric glioblastoma patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lactate and Choline Metabolites Detected In Vitro by Nuclear Magnetic Resonance Spectroscopy Are Potential Metabolic Biomarkers for PI3K Inhibition in Pediatric Glioblastoma

The phosphoinositide 3-kinase (PI3K) pathway is believed to be of key importance in pediatric glioblastoma. Novel inhibitors of the PI3K pathway are being developed and are entering clinical trials. Our aim is to identify potential non-invasive biomarkers of PI3K signaling pathway inhibition in pediatric glioblastoma using in vitro nuclear magnetic resonance (NMR) spectroscopy, to aid identific...

متن کامل

In vitro nuclear magnetic resonance spectroscopy metabolic biomarkers for the combination of temozolomide with PI3K inhibition in paediatric glioblastoma cells

Recent experimental data showed that the PI3K pathway contributes to resistance to temozolomide (TMZ) in paediatric glioblastoma and that this effect is reversed by combination treatment of TMZ with a PI3K inhibitor. Our aim is to assess whether this combination results in metabolic changes that are detectable by nuclear magnetic resonance (NMR) spectroscopy, potentially providing metabolic bio...

متن کامل

In vivo detection of PI3K pathway inhibition by hyperpolarized C MRSI at 14 Tesla

INTRODUCTION Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor in humans [1]. Despite surgical resection, chemotherapy and radiotherapy treatments, the median survival for GBM patients is ~ 1 year [2]. One of the new promising treatment approaches targets the phosphatidylinositol-3-kinase (PI3K) signaling pathway, which plays a crucial role in cell growth, prolifera...

متن کامل

MSK1-Mediated β-Catenin Phosphorylation Confers Resistance to PI3K/mTOR Inhibitors in Glioblastoma.

Glioblastoma (GBM) represents a compelling disease for kinase inhibitor therapy because most of these tumors harbor genetic alterations that result in aberrant activation of growth factor-signaling pathways. The PI3K/mammalian target of the rapamycin (mTOR) pathway is dysregulated in over 50% of human GBM but remains a challenging clinical target. Inhibitors against PI3K/mTOR mediators have lim...

متن کامل

Simultaneous perturbation of the MAPK and the PI3K/mTOR pathways does not lead to increased radiosensitization.

BACKGROUND The mitogen-activated protein kinases (MAPK) and the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways are intertwined on various levels and simultaneous inhibition reduces tumorsize and prolonges survival synergistically. Furthermore, inhibiting these pathways radiosensitized cancer cells in various studies. To assess, if phenotypic changes after per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017